Pulsed Quadrupoles for a Heavy Ion Fusion Neutralized Beam Transport Experiment

E. Henestroza, <u>D. Shuman</u>, D. Vanecek, W. Waldron, S.S.Yu

HIF VNL Internal Review 8/22/01

NTX Requirements for Quadrupoles

Beam Aperture Radius, R _a	14.9	cm
Maximum Focusing Power	2.0	T
Desired Magnetic length, L _m	46	cm
Maximum Total Length, L _t	60	cm
Max. Beam Passage Time (flat top)	5	μs
Max. Flat top field variation, $\Delta B/B_{max}$	< 0.1	%
Operating Pulse Rate	0.1	Hz
(2D) Field Quality @ $R_m=12cm$ ($\Sigma B_n , n>2$)	< 0.1	$\%B_2$

 Quadrupoles must accommodate addition of tunable and moveable (in Z) octupoles (2kG@12cm radius)

NTX Low Field, Large Bore Pulsed Quad Design

NTX Current Dominated Pulsed Magnet Choice

- •Tunable and movable octupole requirements for Phase II require a circular iron boundary (current dominated design).
- •DC design requires inordinately large water cooled conductors (50 cm²/octant), and high power requirements for supplies.
- •>>CAVEAT: Eddy currents must be understood and managed with pulsed design.
 - Beampipe
 - Flux Return Core (2D; 3D)
 - Conductors
 - Vacuum Flanges

NTX Pulser

NTX Pulsed Quad Parameters

Beam Aperture Radius, R _b	14.9	c m
Magnet Winding Radius, R _w	17.32	c m
Steel Inner Radius, R _{si}	18.32	c m
Steel Outer Radius, R _{so}	25.63	c m
Mag., Total Lengths, Lm, Lo	46,51	c m
M agnet to magnet spacing	60	cm (ctrctr.)
Operating Field Gradient, B'	2-5	T/m
Maximum Field, B	0.6	T, @ 12cm
Number of turns, N	8	Turns/coil
2 D Field Coeffs., $B_n (\Sigma n A_n /2 A_2, n>2)$	6 x 1 0 ⁻⁴	T/T, @ $12cm$
Conductor diameter, d _c	4.6	m m
Magnet Current, Imin, - Imax	3.3 - 8.2	k A
Magnet Resistance, R	.036	Ω
Magnet Inductance, L	232	μН
Pulse length (full half sine), t	1.6	m s
Magnet Voltage, @ 5T/m, V	4.0 [+/-2.0]	k V
Pulse energy, @ 5T/m, U	7.9	kJ
Energy loss/pulse, @ 5T/m, Q _t	2.0	kJ
Resistive conductor losses/pulse	2.0	kJ
Eddy current conductor loss/pulse	16	J
Max., Operating Pulse Rates	0.5, 0.1	Нz
Operating Temp. Rise, steady state	5	°C,

NTX Pulsed Quad Cross-section (XY)

NTX Pulsed Quad Coil Design

NTX Pulsed Quad Fabrication Design

- •Coils wound and stretched to form straight and accurate conductor runs.
- •Ends pressed circular with forming press. No pressure applied to jump-overs.
- •Machined wire grooves in cylindrical fiberglass or phenolic coil form to hold wires in position.
- •Quasi-single layer conductor layout (topologically still a two layer winding scheme); simplifies assembly adds reliability and accuracy. Jump-over bends required.
- •Coils potted to laminated iron cores with heat conducting epoxy; cores cooled externally with water cooled chill bars.

NTX Quad Based on IRE Pulsed Elliptical Quad

NTX Magnetic Transport Vacuum System

- •Single, long composite S.S./ epoxy/fiberglass beamtube, separate from magnets.
 - •No thick flanges in high field regions near beam.
 - .020" stainless steel vacuum liner easily penetrated by fields.
 - Internal end flanges allow beamtube to be easily inserted through magnet bores.
- Beamtube supported on end flanges (light and stiff).
- •Magnets supported on external rail; easily pre-aligned on surface plate, and re-aligned in place. Quad positions adjustable in Z (if needed).
- Phase IIb octupoles inserted either inside quad bores, or onto beamtube.

NTX 2D Magnetic Model, 5 T/m (PANDIRA)

NTX Pulsed Quadrupole, 8 turn, base 2D, 14cm Rw. 18.33 Rs. non Z integrated,

NTX 3D Magnetic Finite Element Modeling

NTX Magnetic Modeling to be performed

- •TOSCA 3D model with iron for final accurate comparison to non-iron (infinite permeability iron) models.
- Coil asymmetries and lead effects.
- Multiple quad field maps (non-superposed fields; mutual inductance).
- Octupole and combined quad/octupole field maps.
- Magnetic shielding of source and plasma regions.
- •Transient analysis of eddy currents in flanges.

NTX Eddy Currents and Magnetic Shielding Modeling

- •Eddy currents can be present in four areas:
 - •Beampipe: main field bucked by "2nd quad", of 1/15 main field amplitude, 86 deg. out of phase (34 μs calculated decay time constant)
 - •Conductors: small power loss (scales as r⁴); negligible slight shift of centroids
 - •Laminated core: negligible losses; negligible heating or drop in efficiency of flux return
 - •Flanges: possibly some heating, end fields possibly perturbed at large radius (however, beam is small at flanges)
- Magnetic Shielding may be required at:
 - Source area where beam energy is low
 - Plasma volume downstream (Bmax~1G)

ANSYS 2D finite element transient analysis showing $\sim 30 \mu s$ decay time constant (response to step input where dB/dt goes to 0 @ t=.0008s)

NTX Pulsed Quad 2D FE Thermal Model, equil.

NTX Pulsed Quadrupole plus Octupole Modeling

Field coefficients from nt_q_o+.opn (positive octupole) Normalization radius = 12.00000cm

```
(Bx - iBy) = i[sum n*(An + iBn)/r * (z/r)**(n-1)]
n n(An)/r
                n(Bn)/r
                           Abs(n(Cn)/r)
2 5.9613E+03
                0.0000E+00
                           5.9613E+03
               0.0000E+00 2.0044E+03
4 2.0044E+03
6 3.4416E-01 0.0000E+00 3.4416E-01
8 -1.1531E+00 0.0000E+00
                           1.1531E+00
10 -9.6456E-01 0.0000E+00
                           9.6456E-01
12 -2.0029E+01
                0.0000E+00
                            2.0029E+01
14 -2.8390E+00
                0.0000E+00
                             2.8390E+00
```

Field coefficients from nt_q_o-.opn (negative octupole) Normalization radius = 12.00000cm

```
(Bx - iBy) = i[sum n*(An + iBn)/r * (z/r)**(n-1)]
n n(An)/r
                            Abs(n(Cn)/r)
                n(Bn)/r
2 5.9614E+03
                0.0000E+00 5.9614E+03
4 -2.0039E+03 0.0000E+00
                            2.0039E+03
6 3.0062E-02 0.0000E+00 3.0062E-02
8 1.0328E+00 0.0000E+00
                           1.0328E+00
10 -6.5909E-01
                0.0000E+00
                            6.5909E-01
   1.9690E+01
                0.0000E+00
                             1.9690E+01
```


NTX Pulsed Quad 8 turn, plus Octupole, 4 turn, base 2D, 14cm Rw, 18.33 Rs

